Wärmeschutz und Wärmespeicherung

Berechnung effektiven Wärmedurchgangskoeffizienten

Datum: 30.07.2018 Ersteller: MK/TP

Stationärer U-Wert unter Berücksichtigung der instationären Wärmespeicherfähigkeit

$$U_{eff} = \frac{1}{\frac{d}{\lambda} + 0.17} - \frac{I \times a_S}{\Delta \theta_L} \times \frac{(b + f_d \times U)}{(b + f_d \times \alpha_a)}$$

d	Abmessung d. Außenkonstruktion, Dicke d. Bauteils [m]
λ	Wärmeleitfähigkeit d. Außenkonstruktion [$rac{W}{mK}$]
I	durchschnittliche Strahlungsintensität während einer 12 Stündigen Einstrahlungszeit $[rac{W}{mK}]$
a _s	Strahlungsapsorptionsgrad [-]
U	Wärmedurchgangskoeffizient $[rac{W}{m^2K}]$
θ_{L}	Temperaturdifferenz zwischen innen und außen [K]
b	Wärmeeindringkoeffizient $[rac{Wh^{0.5}}{m^2K}]$
	$b = \sqrt{\lambda \times \rho \times c}$
f_d	Faktor, der den mitwirkenden Speicherquerschnitt der Konstruktion sowie die entsprechende Wärmefluss berücksichtigt [h ^{0,5}] (Parabelquerschnitt Faktor 7,63)
$\boldsymbol{\alpha}_{a}$	äußerer Wärmeübergangskoeffizient (experimentell ermittelter Wert 17,5 $[rac{W}{m^2 K}]$)
ρ	Raumgewicht d. Baustoffes $[rac{kg}{m^3}]$
С	spezifische Wärmekapazität $\left[\frac{Wh}{kgK}\right]$
	кук

Standort	Salzburg Stadt	
Ausrichtung	Ost/West	
Variante	TYP 900	
λ_{unit}	0,24	[W/mK]
U_{mas}	0,436	[W/m ² K]
ı	60,912	$[W/m^2]$
a _s	0,6	[-]
θL	32,8	[K]
b	6,817	[Wh ^{0.5} /m ² K]
f _d	7,63	[h ^{0.5}]
α_{a}	17,5	[W/m ² K]
ρ	820	[kg/m³]
С	0,2361	[Wh/kg K]
d	0,55	[m]

Mauerwerk unverputzt:

Mauerwerk verputzt:

U _{eff} 0,326 [W/	m"K]
----------------------------	------

U _{eff'} =		0,309 [W/m ⁻ K]			
Annahme:		d[cm]	λ[W/mK]		
Systemputz		2	0,8		
Innenputz		1	0,7		
1	R		3,070 m ² K/W		
$U_{eff}' = \frac{1}{D_{eff} + D_{eff} + D}$	Rsi		0,130 m ² K/W		
$C_{eff} - R_{si} + Rse + R$	Rse		0,040 m ² K/W		

Anmerkungen

Werte laut Angabe Spezifische Wärmekapazität c = 850 J/kgK